Syntax-Aware Language Modeling with Recurrent Neural Networks
نویسندگان
چکیده
Neural language models (LMs) are typically trained using only lexical features, such as surface forms of words. In this paper, we argue this deprives the LM of crucial syntactic signals that can be detected at high confidence using existing parsers. We present a simple but highly effective approach for training neural LMs using both lexical and syntactic information, and a novel approach for applying such LMs to unparsed text using sequential Monte Carlo sampling. In experiments on a range of corpora and corpus sizes, we show our approach consistently outperforms standard lexical LMs in character-level language modeling; on the other hand, for word-level models the models are on a par with standard language models. These results indicate potential for expanding LMs beyond lexical surface features to higher-level NLP features for character-level models.
منابع مشابه
Capturing Dependency Syntax with "Deep" Sequential Models
Neural network (“deep learning”) models are taking over machine learning approaches for language by storm. In particular, recurrent neural networks (RNNs), which are flexible non-markovian models of sequential data, were shown to be effective for a variety of language processing tasks. Somewhat surprisingly, these seemingly purely sequential models are very capable at modeling syntactic phenome...
متن کاملNeural Language Modeling by Jointly Learning Syntax and Lexicon
We propose a neural language model capable of unsupervised syntactic structure induction. The model leverages the structure information to form better semantic representations and better language modeling. Standard recurrent neural networks are limited by their structure and fail to efficiently use syntactic information. On the other hand, tree-structured recursive networks usually require addi...
متن کاملSecond Exam: Natural Language Parsing with Neural Networks
With the advent of “deep learning”, there has been a recent resurgence of interest in the use of artificial neural networks for machine learning. This paper presents an overview of recent research in the statistical parsing of natural language sentences using such neural networks as a learning model. Though it is a fairly new addition to the toolset in this area, important results have been rec...
متن کاملApplication of artificial neural networks on drought prediction in Yazd (Central Iran)
In recent decades artificial neural networks (ANNs) have shown great ability in modeling and forecasting non-linear and non-stationary time series and in most of the cases especially in prediction of phenomena have showed very good performance. This paper presents the application of artificial neural networks to predict drought in Yazd meteorological station. In this research, different archite...
متن کاملRobust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays
In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...
متن کامل